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relatively large particles, it can be driven across the Atlantic Ocean until tlie south, central and north part 
of America. 

- Optical Parameters 
The desert dust is composed by highly irregular shaped particles that cannot be described as 

spheres. Our technique is able to describe these particles as clusters of spheres, possibly characterized 
by different refractive indices, whose arrangement is chosen so as to simulate, as best as possible, the 
real components of the aerosols. This approach offers many advantages: it allows us both to determine 
the correct scattering pattern that, even after the random averaging procedure over the orientations is 
performed, still resembles the asymmetry of the constituent objects(1,2); both to follow the change in the 
optical properties when, due to natural processes, the single scatterer changes its morphology (3,4). 
Furthermore, the T-matrix approach enables us to determine analytically, when necessarily, averages 
over non-random orientational distributions, once an appropriate weight function is introduced (5,6). 

To simulate the configurationally anisotropy, we choose different cluster models composed of 4 or 
5 spheres arranged as in Fig. a. 

At A,=351 nm we used for the refractive index n=1.5225+10.006. 

- Size distributions ^ 
The desert dust ranges over several orders of magnitude in size from 10" \im to 10 ^m. The 
observations suggest a size distribution represented by means of a trimodal lognormal function; however 
the third mode that has a modal radius of 5 (xm can be neglected as it represents a size distribution of 
particles that have a great settling rate. For this reason we consider a bimodal lognormal distribution with 
the following expression 

A^,- dNiJr)     
dlogr    ^flTtlogcT, 

-exp 
(log r-log?-,) 

2{\0gCTif 

2^ 
1=1.2 

In this formulation Ni is the total number of particles per unit volume, n and a-, the distribution of the 
geometric radius and width, respectively. The parameters we use for the distribution are derived from 
literature (Table 2). By varing the distribution parameters in a random way, we compute 5000 bimodal 
distribution that we use to perform the integral necessary to compute all the possibly a and b values for 
our model. In fig (b) we show some of the distributions calculated with three sets of the parameters (ri, oi, 
Ni) and (r2, C2 , N2) chosen In a random way in the range indicated in table 2. 

Table 2. Parameters for the size distribution of the desert dust as reported by different authors. 

ri {(im) 01 Ni(cm-") rz (nm) 02 N2(cm"') 

0.02 1.5 180 0.3 1.5 4 

0.08 1.8 1470 1.5 2.0 105 
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- Results and Discussion 
The simulation that is still in progress, considers aerosol scatterers modelled as cluster of identical 
spheres whose radia are chosen so that the radius of the sphere surrounding the whole cluster ranges 
from 0.02 ^m to 2 iim, even if, with the acquisition of more powerful computers, we plan to extend the 
range up to 5 nm 
We present here the preliminary results obtained for the first cluster shown in fig (a). 
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Fig (b) Fig (c) 

In fig. (c) we report the scatterplot in a loglog scale of the extinction coefficient vs the backscattering 
coefficient obtained for the desert aerosol. It can be observed that we obtain a dispersion of the values 
that we are going to compare with the simulation that consider spherical scatterers. At a first exam these 
values present a more large dispersion; feature that seems to be an interesting peculiarity of the model 
with which it would be possible to analyze more correctly the scattered light generated by the interaction 
of the Lidar radiation with the atmospheric constituents. 

1)F. Borghese, P. Denti, R. Saija, G. Toscano and O. I. Sindoni.Macroscopic optical constants of a cloud of 
randomly oriented nonspherical scatterers, Nuovo Cim. B 81, 29-50 (1984). 
2)0. I. Sindoni, F. Borghese, P. Denti, R. Saija and G. Toscano, Theoretically computed optical constants and 
scattering properties of non-spherical scatterers, in Aerosols Liu, Pui, Fissan, eds., (Elsevier, New Yorkl984), 810. 
3) R. Saija, G. Toscano, O.I. Sindoni, P. Denti and F. Borghese, Effect of the chemical reactions on the 
macroscopic optical constants of a model aerosol, in Aerosols Liu, Pui, Fissan, eds. (Elsevier, New York, 1984), 
817. 
4)R. Saija, G. Toscano, O. L Sindoni, F. Borghese and P. Denti, Effect of the ^^chemical reactions" on the 
absorption coefficient of a polydisperse model aerosol, Nuovo Cim . B 85, 79-93 (1985). 
5)F. Borghese, P. Denti, M.A. lati, R. Saija, Backscattering from model atmospheric ice microcrystals. Nuclear 
and Cond Matter Phys. CP513, 43(2000) 
6)F.Borghese, P. Denti, R. Saija, M.A. lati, O.l Sindoni, Optical properties of a dispersion of anisotropic particles 
■with non-randomly distributed orientations. The case of atmospheric ice microcrystals,In press in J. Quant. Spectr. 
&R.F.(2001). 
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Neural network scheme for the retrieval of size and Index of refraction of microparticles from the 
angular scattering pattern. 

The retrieval of the staicture of the atmospheric constituents from experimental data is one of the 
most interesting problems that have been faced in these last years. As the most recent instruments are 
able to sample the atmosphere giving a large amount of information whose inversion require high 
performance computers, has grown in recent years the necessity to develop new retrieval algorithms that 
would not rely on detailed knowledge of physical processes involved and fast enough to be implemented 
in computers with low-cost hardware. Because neural networks generally exhibit these properties, we 
implemented this algorithm to retrieve the size and the index of refraction of a dispersion of spherical 
microparticles from the one angular scattering pattem. 

In the framewori< of the neural network a scattering problem can be considered as follows: the 
intensity of the scattered light measured at an angle d coming from a single particle embedded in an 
external medium, is a function of rand m, the radius and the refraction index of the particle respectively 

l(a)=F(9,r,n) 

Given a vector x containing n measured values of I for n different & angles (these represent the input 
data), the inverse problem consists in determining an inverse function f=F"^ that gives us the information 
on r and n (the output data). 
- The training data 
We have calculated a set of vectors x containing the 51 elements representing the intensities obtained 
at X=632.8 nm, by varying the parameters r and m: these vectors have been used as input quantities for 
training the network. The radius of the particles has been varied in the range of 50-500 nm and in Table I 
we report the values of the real and imaginary part of m' used to obtain 1(d). 
As one can observe in Fig.1 the input data, even in the case of sphere with the same dielectric constant, 
presents a large spread of the numeric values representing the intensities (y axis) so it has been 
necessary to perform normalization and scaling in the range [0,1] of all data; moreover, for a better 
performance of the network, the inputs calculated in the angular range 20°-170° were disordered. In Fig. 
la we plot the same data represented in fig1 after the procedure of normalization and mixing. 
- The training algorithm 
We have employed a feed-forward neural network, also called perceptron. The type of training algorithm 
employed that yield the best results is based on the Levenberg-Marquardt method. This algorithm gives 
fast convergent results even if it requires a greater amount of computer memory. To take advantage of 
the neural network's nonlinear approximation capabilities requires, in addition to an input and an output 
layer, one hidden or intermediate layer. The activation functions used for the hidden layer are the tansig 
function and for the output layer the purelin function. Moreover, the exact size of the hidden layer has to 
be determined empirically. 
- Conclusion 
As shown in Fig 2, the most successful network configuration found in this study uses 51 inputs (the 
intensities), 10 hidden neurons with 3 outputs (r, real and imaginary part of m^). 
As a measure of goodness, we have calculated the correlation coefificient defined as follows: 

where Xi and X2 are two observed quantities and X| is the mean of the observed value for the i-type 
sample. 
In Figs 3-6 we collected the relevant results obtained by means the sotfware package MATLAB 
implemented on a Pentium III with 256 MB of RAM. In fig.4, 5 and 6 we can observe that after 1000 
training cycles (epochs) the retrieved coefficients (red curves) are in a quite good agreement with the 
target parameters (blue curves). Even if the better agreement regards the radius that gives a 
correlation coefficient of 0.99574 (see table II), we can assess that the performance of the network is 
still good also for the dielectric constants. It is useful to highlight the goodness of the index of 
performance of the network given by the small value of mean squared en-or (see Table II). 
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TABLE 1 
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Fig 2 - Scheme of the Neural Network implemented with 
the software package MATLAB 
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Fig. 5 The same of fig 3 but for the real 
part of dilectric constant. 

Fig. 6 The same of fig 3 but for the 
imaginary part of dielectric constant. 
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Efficient Light Scattering Calculation for Aggregates of Large Spheres 

It is well known that a possible means for determining shape and structure information about 
airborne microparticles is to investigate the angular scattering pattern that is done usually in only one 
angular dimension (9). 

However, as the elastic scattered angular intensity distribution from nonspherical particles has an 
azimuthal ((p) as well as a polar (S) dependence, observation of the two-dimensional angular optical 
scattering (TAOS) is a more useful tool for determining the shape and the structure of microparticle 
aggregates. Recently, Holler et al. (1) have devised an experimental setup that is able to illuminate a 
single scatterer and to measure its TAOS for scattering angles that go from forward to backward direction. 
In view of the capability of this new experimental device, we discuss how and to what extent the 
computational effort can be reduced still preserving the quantitative features of the signature of a sample 
aggregate. As we are not interested to use orientational averaging procedure, we perform all the 
calculation for a microparticle aggregate in the framework of the E-scheme that prevents us to obtain the 
transition matrix that requires a high computational effort. 

The description of E-scheme, the results of the calculation and the comments, also presented at 
the Annual Scientific Conf. On Obscuration ad Aerosol Res. (Abardeen Md,USA, June 2001), are widely 
discussed in the following paper that will be published in Applied Optics. 
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Efficient Light Scattering Calculations 
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Aberdeen P. G., Gunpowder Branch, MD 21010, USA 

The calculation of the scattering pattern from aggregates of spheres through 
the T-matrix approach yields high precision results but at an high computa- 
tional cost specially when the aggregate concerned is big or is composed of 
big-sized spheres. With reference to a specific but representative aggregate, 
we discuss how and to what extent the computational effort can be reduced 
still preserving the qualitative features of the signature of the aggregate 
concerned.   © 2002 Optical Society of America 

OCIS codes: 000.0000, 999.9999. 

1.    Introduction 

The scattering properties of spherical particles, both homogeneous and radially non- 
homogeneous, can be easily and a<;curately calculated through Mie theory^ or one of 
its extensions^ over a wide range of radii and wavelengths. The theoretical predictions 
are in both qualitative and quantitative agreement with the observations provided the 
experimental setup and measured parameters faithfully reproduce the assumed theo- 
retical model (actual sphericity of the scatterer, dielectric constant, scattering angle, 
etc...).3 

The situation is quite different when the scatterer is not spherically symmetric; 
in that case the calculation of the scattering properties (scattering amplitude, scat- 
tering and extinction cross sections, scattered intensity) with an accuracy of 3 or 4 
significant digits, may become quite a cumbersome task, particularly as the size of 
the scatterer gets bigger and bigger. Performing calculations to so high an accuracy, 
however, makes sense when one is interested in the properties of just one well char- 
acterized particle but, when the theoretical predictions are to be compared with the 
experimental data from an assembly of scatterers, such a computational effort may 
be pointless. Consider, for instance, a sample made of a dispersion of non spherical 
particles: as a rule, the component particles are not identical nor equioriented so that 



many parameters are required to fully characterize the dispersion. In view of the un- 
avoidable imprecision in the determination of each of the parameters involved in the 
description of the sample, a complete characterization of the scatterers is not needed: 
a model reproducing the overall shape and symmetry of the scatterer may be a good 
one to perform the calculations. Moreover, the effort devoted to the calculation of 
the scattering properties of individual particles can be somewhat reduced. Of course 
the question arises: what degree of precision is reasonable to pursue in the calcu- 
lations to get a satisfactory description of the scattering properties of the particles 
and what is the most suitable computational technique to achieve this precision? An 
accuracy within e.g. 10% could be enough to give a good qualitative description of 
the individual scatterers, to be integrated in the overall description of the dispersion. 

Assuming that a model for the particles has been chosen, one has still to choose 
the most suitable computational technique to get a satisfactory description of their 
scattering properties, as several computational methods imply an intrinsic accuracy 
that stems from the assumptions on which they are based. In this respect, methods 
based on series expansions are able to give results whose accuracy can be graduated 
according to the need: in fact, we recall that Mie theory itself is just a series ex- 
pansion method. Let us consider also the problem of scattering from a particle that 
actually is or can be modeled as an aggregate of spherical scatterers. By expanding 
the field in a series of vector multipole fields one is able to get the transition matrix 
and the scattering amplitude of the whole aggregate within an approximation that 
depends only on the maximum order of the multipole fields that are included into the 
expansion. This is a useful circumstance because, when the number of the spheres in 
the aggregate is large or when the individual size of the component spheres is big the 
computational eifort grows more and more heavy, so that, determining the minimal 
acceptable accuracy of the results becomes an important issue. 

In order to give a quantitative content to the above considerations we devote 
this paper to the determination of the minimal acceptable accuracy of scattering 
calculation for a big cluster of spheres through the method of expansion that we 
mentioned above. To this end, we chose to deal with the same model scatterer that has 
already been considered by Holler et al.^ We stress, however, that our purpose is not to 
compare our calculations with the predictions in Ref.4 or with the experimental data; 
our purpose is instead to investigate through the specific case we deal with how and to 
what extent computational efforts can be reduced still getting a reliable qualitative 
description of the scattering pattern. To perform our task a two-step calculation 
proved to be more viable than a single-step one. Accordingly, first we reduce the 
geometrical dimensions of the scatterer leaving unchanged everything else; doing this, 
on one hand drastically reduces the difficulties connected with the computation and 
the time required to perform it, and on the other hand allows us to work out the 
conditions that ensure the stability of the results from a qualitative point of view. In 
other words we want to determine the conditions under which the calculated scattering 
pattern qualitatively reproduce the exact one in the sense that it reproduces the 
scattering signature of the individual particle. In the second step, we consider the 
model scatterer with its full dimensions and we apply the already tested stability 
criteria so to get a scattering pattern whose validity, at least from a qualitative point 



of view, is reasonably ensured. 
Section 2 gives a brief description of the theoretical approa<:h, devoting particular 

attention to the aspects regarding the convergence and the stability of the results. 
Section 3 is devoted to the presentation and discussion of the results and finally in 
section 4 we draw a few conclusive remarks. 

2.    Scattering by clusters of spheres. Theory 

In order to fix the notation, let us state that the polarization of the incident and of 
the scattered field is described with reference to two pairs of mutually orthogonal unit 
vectors, u/„ and Us^, with 77 = 1,2, such that 

U/l X U/2 = k/,      Usi X US2 = ks. 

In this paper we choose 

U/l = ■^7,      U/2 = (fij 

and 

where ^/, (pi, ■&s, 'fis ^^^ ^"^^^ vectors along the meridians and the parallels of the 
unit spherical surface with center within the scattering particle at the points r = kj 
and f = ks, respectively.^ Hereafter we denote an incident field polarized along U/„ 
as E/^ and the corresponding scattered field as E^^. 

Let us consider a cluster of spheres, numbered by the index a, of radius pa and 
refractive index «„, whose centers lie at Ra, embedded into a non-absorptive medium 
of refractive index n. Neither the raxlii nor the refractive indexes of the component 
spheres need to be equal to each other. The electromagnetic field is expanded in terms 
either of the vector multipole fields j}^, with 

JLV, K) = jiiKr)X,mir),    jS(r, K) = j^V x 3\'2{r, K) 

that are regular at the origin, or of the multipole fields HJ^^ that are identical to the J 
multipole fields except for the substitution of the Hankel functions of the first kind hi 
in place of the Bessel functions ji and thus satisfy the radiation condition at infinity. 
In the preceding equations the vector functions X/m are vector spherical harmonics® 
and the superscript p is a parity index that distinguishes the magnetic multipoles 
(p = 1) from the electric ones (p = 2). We assume that all the fields depend on time 
through the factor exp[—itji], that is omitted throughout, and define the propagation 
constant in vacuo k = ujc. 

The incident field is assumed to be a polarized plane wave and is expanded as 

E,,(r) = £;o^jS(r,nA:)<l, 



where <l = W,(^)(u,„k,) with 

where we define the transverse harmonics 

Z<i2{k) = X,^(k),    zS(k) = X,^(k) X k. 

The field scattered by the whole cluster is written as the superposition of the fields 
scattered by the single spheres 

Es. = Eo'£E HS(^., nk)A^X^ (1) 

where FC = r — Rg, whereas the field within the a-th sphere is expanded as 

The amplitudes -4^^/m ^"^^ ^mlim i^ Eqs.(l) and (2) are determined by the custom- 
ary boundary conditions across the surface of each sphere in the cluster, and their 
knowledge totally solves the problem of the dependent scattering from the aggregate; 
in fact, for each value of a, the >tj^;„ describe the scattering by the a-th sphere, 
due to the incident plane wave and to the waves previously scattered by all the other 
spheres in the aggregate. Anyway, using the procedure that is fully described e.g. 
in Ref. 9, the amplitudes Aj^J^i^ turn out to be the solution to the system of linear 
non-homogeneous equations 

Q>   p'l'm> 

where we define the shifted amplitudes of the incident field 

\A;(P)    _ Y^   ^(PP')      u/^P') (A) 

p'l'm' 

The quantities J^almoi'm' ^^^ ^^e elements of the matrix that, according to the addition 
theorem for multipole fields,^ translates these fields from the origin of the coordinates 
0 at Ro = 0 to RQ, i.e. to the center of the a-th sphere, and 

In Eq. (5) the quantities R'^i and i?[,, are the elements of the transition matrix for the 
a-th sphere and, except for a sign, coincide with the customary Mie coefficients 6/ and 
ai, respectively; the quantities 'HaimaU'm'^ whose explicit expression is given in Ref.7, 
come from the addition theorem of Ref. 6 take account of the multiple scattering 
processes that occur among the spheres in the aggregate. 



A.    T-scheme 

In principle, the amplitudes A]^Ji,^, contain all the information on the scattering 
properties of the cluster concerned. In fact, we will now discuss two schemes for the 
extraction of the relevant information from the solution to system (3), the choice 
being dictated by the kind of information one is interested in. The first scheme, that 
we summarize in the present subsection, is the most complete as it produces the T- 
matrix of the scatterer. To this end, letting M be the matrix whose elements are given 
by Eq.(5), we recall that the formal solution to system (3), 

p'Vm' 

resembles the definition of the T-matrix.^° Nevertheless, M~^ does not coincide with 
the T-matrix of the aggregate because, according to Ref. 10, the transition matrix 
relates the multipole amplitudes of the incident field to those of the field scattered by 
the whole object, whereas Eq. (6) relates the amplitudes of the incident field to those 
of the fields scattered by each sphere in the aggregate. Nevertheless, the addition 
theorem of Ref.6 allows us to write the scattered field in terms of multipole fields 
with origin at O as 

plm    a'   p'Vm' 

and consequently to write the amplitudes of the field scattered by the whole aggregate 
as 

^V'lm — 2-^  2-^ 'Jolma'l>m"^rj'a'l'm'f VV 
a'   p'Vm' 

where the quantities Jo/ma'i'm'' whose explicit expression is given in Ref.7, are the 
elements of the matrix that translates the origin of the H-multipole fields from RQ/ 

to the origin of the coordinates at O. 
At this stage the expression for the amplitudes -4j,^j/;<„/ given by Eq. (6) can be 

substituted into Eq. (7) that consequently reads 

^■n'lm —   Z_j '•>lmVm'''^ Iri'Vm'-' 
p'Vm' 

where the elements of the true T-matrix of the aggregate are 

'^ImVm' - ~ / , / .    / ,   ^QlmahMV*^     ] aLMa'L'M"^o''L'M'QVm'- \°) 
aa' qLMq'L'M' 

The elements Sl^i,^, account for all the scattering properties of the cluster. In fact, 
in the far zone the scattered field assumes the asymptotic form 

plm 

5 



where f^ is the scattering amplitude^ and Eq. (7) has been used. Therefore the com- 
ponent of the scattered field that is polarized along Usr, reads 

expikr 
^Sri' • U5») — c^O Jriv' 

with 

/-'="i^ E E wit«5a'i'<L' (9) 
plm p'l'm' 

and 14^5^;^  =  WI^{UST,,^S)- AS a consequence, the scattered intensity, both co- 
polarized and cross-polarized, turns out to be 

1^0 2 

Hereafter we will refer to the procedure outlined above as the T-scheme. 

B.    E-scheme 

We now come to describe an alternative scheme, the E-scheme, that, in some in- 
stances, has useful computational advantages. We start remarking that, when Eq. (8) 
is substituted into Eq. (9) to get the components of the scattering amplitude, the 
resulting expression contains the terms 

plm p'l'm' 

that can be somewhat simplified as follows. Since r = R^ + TQ, 

exp[ik/ • r] = exp[«k/ • RQ] exp[ik/ • To] ■ 

Therefore, by expanding u/,, exp[ik/ • r] and U/^ exp[ik/ • r^] we get 

WS™ = exp[ik7 • R.]<1. 

Comparison of the latter equation with Eq. (4) yields 

E '^^^li'm'K'L' = exp[^kz • R.]<1. (10) 
p'l'm' 

Substitution into Eq.(lO) of Usr, in place of U/^ and ks in place of k/ and complex 
conjugation then yields 

E ^a^oi'm'W^'X' = -M-^^s ■ R.]<!;. 
p'l'm' 

Now, on account that the refractive index n is real, we get^^ 

7-(pp')»     _ 'j-ip'p) 
^almOl'm' ~ '•Jol'm'almi 



so that 

E ^t'^i^l/™ = exp[-iks • R.]<!;. (11) 
p'/'m' 

Using Eqs.(lO) and (11), /,^/ takes on the final form 

/w = j^E E Ew'a«-pHks-R.i 
pLMp'L'M' aa> 

We stress that unlike the approximate scheme of Xu'^ to get the expression of the 
scatterd field in the far zone, the E-scheme is exact as it implies no further approxi- 
mation beyond the customary truncation of the multipole expansions. We tested the 
reliability of this scheme by using it extensively to compare our theoretical predic- 
tions*^ with the experimental data of Schuerman and Wang from well characterized 
clusters in fixed orientation.*^'*^ 

C.    Convergence 

According to T-scheme, calculation of the transition matrix of a cluster requires 
inverting the matrix M whose order is, in principle, infinite. Naturally, system (3) must 
be truncated to some finite order by including in Eq.(8) terms up to order LM, that is 
the maximum value both for L and L', chosen so as to ensure the required accuracy of 
the transition matrix elements. For a cluster of TV spheres this implies to solve a system 
of order DM = 2NLM{LM + 2) that may grow rather big. Actually, the inversion of 
the matrix M is responsible for most of the time required for the calculation; this 
time scales, in fact, as D^- According to the considerations in Section 1, LM must 
be so chosen that using an increased LM the pattern of the scattered intensity no 
more undergoes any qualitative changes. Choosing the least adequate LM is thus 
decisive: on account of the definition of DM, computation time increases as L^ and 
storage as L\f. Therefore, using too big an LM would require a computer time that is 
definitely longer than a real-time calculation that may be required e.g. for medical or 
meteorological applications. It may be worth remarking that LM could take a different 
value for each of the spherical components of the cluster we deal with: in other words, 
there is no reason why / in Eqs.(l) and (2) should not assume a maximum value that 
depends on a. As a noticeable consequence. DM could be somewhat reduced. This 
is in connection with the obvious remark that the spherical components, according 
to their own scattering power, may give considerably different contributions to the 
scattering from the cluster as a whole. Such a refinement in assigning LM, however, 
is of no use when the scattering powers of the individual components are similar and 
when one deals with compact structures. Since in Sect.3 we will deal just with a 
cluster of this kind, we will assign only one value of LM to be applied to each of the 
spheres composing the cluster. 

At this stage, it may be useful to make a few quantitative considerations about 
choosing LM for exact convergence, i.e. convergence to fn 3-4 significant digits. For 



a dielectric sphere with radius bg we have to choose LM > kbs + nig; when we deal 
with a cluster of spheres, we get the exact description of the scattering problem 
considering LM > kbc + rric, where be is the radius of the smallest sphere including 
the whole aggregate. The numbers m^ and rric are positive integers that depend on 
the refractive indexes; in general, if kbg and kbc are large m, <C kb^ and rric <C kbc. 
Nevertheless, in the next section, we will show that, in order to give a good qualitative 
description of the scattering properties of the aggregate we consider it is sufficient to 
use a value for L\f that would rather be appropriate to the exact description of the 
scattering from a single sphere of the aggregate. The validity of our choice for LM will 
be checked by looking wether or not the scattering properties of the whole aggregate, 
thus calculated, will still keep their qualitative features with increasing value of LM- 

Finally, let us stress that the T-scheme and the Ei-scheme are not the only pos- 
sible ones to describe scattering from aggregated spheres. In fact, schemes have been 
devised that do not require direct inversion of matrix M as well as schemes in which 
the averaging and inversion are integrated in a single computational procedure.^^'^^ 
As all these alternative schemes are aimed at minimizing the computational effort, 
they should be carefully considered when the main interest is the exact solution of 
the scattering problem. 

Using the E-scheme slightly reduces the amount of calculation for a given LM 

with respect to the T-scheme. In fact, the latter requires the additional calculation 
of the sums in the left hand side of Eqs.(lO) and (11) that, in turn, is more or less 
onerous according to the value one assumes for IM, the maximum /' to be included 
to get an accurate representation of the scattered field. E-scheme, however, prevents 
us to obtain the transition matrix as defined by Eq. (8) and therefore to use the 
orientational averaging procedure, widely described elsewhere:^* the true transition 
matrix, indeed, cannot be reminiscent of information either on the excitation (through 
the factors exp[ik/ • Ha]) or on observation (through the factors exp[—iks • Ha'])- It 
is also to be borne in mind that once the T-scheme has been applied, another chunk 
of calculation is needed to perform the orientational averages. In conclusion the E- 
scheme is appropriate when orientational averages are not required. 

3.    Results and discussion 

Although the cluster that we study in this paper is the same 13-spheres clusters 
considered by Holler et al., we stress again that our purpose is quite different, as we 
explained in Sect.l. The cluster of interest is composed of polystirene latex spheres 
with size parameter Xg = nkbg = 13.36, arranged in a closely packed structure with 
a roundish geometry so that the overall size parameter of the whole aggregate turns 
out to be Xc = nkbc = 40. The coordinates of the centers of the spheres are listed in 
Table 1; n = 1. According to the considerations at the end of Sect. 2 convergence to 
3 decimal places would require LM > 40. In Ref. 4, the calculations were performed 
through the recursive algorithm by Chew*^ that shares in common with our approach 
the fact that the only approximation lies in the choice of the value of LM at which the 
multipole expansions of the electromagnetic fields are stopped. Nevertheless it appears 
that a generalized use of such a perturbative-iterative approach would require some 



caution and artwork in its implementation. For instance, the actual achievement of 
convergence for a given choice of LM should be carefully verified. On the contrary, 
the direct approach that we use, i.e. the E-scheme, appears to be straightforward and 
leaves to the researcher full control of the accuracy that can be achieved. 

In the following discussion the wavevector of the incident plane wave k/ has 
1^1 = 0° and di = 90°, or -di = 45°. The scattered intensity is calculated for -90° < 
t?5 < 90° and 0° < v?s < 180° and is represented through contour plots. In a few cases 
are also reported sections of these contour plots for ds = 30° and t?s = 90°. Choosing 
di = 90° corresponds to incident field viewing the scatterer as a highly symmetric 

object. 
With the aim of finding a qualitative stability criterion we consider a cluster of 

spheres with the same geometry as the one we chose but scale down the dimensions 
of the component spheres to the 20 %. Since we assume that the incident field has a 
wavelength of 0.532 //m, the size parameter will be reduced to Xs = 2.672 for the single 
component sphere and to a^c = 8 for the whole cluster. We make an angular analysis 
of the scattered intensity in the forward scattering zone. In Fig. 1 (a), (b) and (c) we 
report the contour plots, calculated using the E-scheme, of the differential scattering 
cross section 1^^ = |/^^|^ for IM = 3, 5, 8, respectively. The corresponding plots for 
I^^ show the same trend that we are going to discuss and are therefore not reported. 
Comparison of the plots (a), (b) and (c) shows that the stability is already reached 
for LM = 5; in fact, the plots for LM = 5 [Fig.l (b)] and IM = 8 [Fig.l (c)] do not 
show any important difference. Note that IM = 5 is, in principle, a Httle larger than 
barely sufficient to get the convergency for the component spheres. This result has 
been further investigated by reporting in Fig. 2 (a) the differential scattering cross 
section for ??/ = 90° and ifi = 0° for LM = 2, 3, 4, 5; in Fig.2 (a) i?s = 90° and 
-90° <^s< 90°; in Fig. 2(b) ^s = 30° and -90° < (fs < 90°. The plots in both 
Fig.2 (a) and Fig.2 (b) show that the changes undergone by the intensity profiles for 
LM > 4 are quite negligible. We do not report the profiles for LM > 5 because, on 
the scale of the figure they are perfectly superposed to the profile for LM = 5. We are 
thus led to conclude that the contour plot in Fig.l (b), i.e. for LM = 5, gives a good 
description of the actual scattered intensity and that IM = 4 is sufficient to get an 

acceptable qualitative description. 
As regards the behavior of the T-scheme, we found, as expected, that IM > LM 

is required to get full convergence in the sums in Eq.(lO) and (11) so as to reproduce 
the results obtained in the E-scheme for the same value of LM- In practice, we report 
in Fig.3 the intensity profiles of Fig.2 (a), calculated with LM = ^ both in the E and 
T-scheme and, in the latter case, for increasing values of IM- The curves in Fig.3 show 
at once that, although /M = 8 is quite acceptable, and that IM = 10 is even better, 
the results of the E and T-scheme become indistinguishable on the scale of the figure 
for IM = 12. Such a perfect convergence is unnecessary, however, as it would yield 
the perfect reproduction of the results of the E-scheme for LM = 4, that are in their 
nature qualitative results. Thus, one could choose for IM the least value that would not 
disrupt the qualitative behavior of the scattering pattern: according to Fig.3, IM = 8 
is a fair choice. This is yet a large value so that there is a cost, in particular when 
averaging over the orientation of the scatterer is in order. Anyway, we can conclude 
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that using the E-scheme, a good stability criterion requires using a value of LM just 
a little bigger than necessary to get the convergency for the component spheres. 

In order to test the stability criterion just found, we calculate, using the E-scheme, 
the scattering pattern of the cluster considered with its real dimensions: in this respect 
we recall that now Xs = 13.36. The results are reported for -dj = 90° and (/?/ = 0° 
in Fig.4 for LM = 13 in (a) and for LM = 15 in (b); the pattern for i9i = 45° and 
ipj = 0° is reported in Fig.5 for LM = 13 in (a) and for LM = 15 in (b). Even a 
cursory examination of the patterns in Figs.4 and 5 shows that the stability criterion 
is effective in yielding patterns that give an acceptable qualitative description of the 
scattering properties of the cluster at hand. In fact, when LM is increased from 13 to 
15 the changes undergone by the patterns are small on the scale of the figure. Even in 
this case, however, the numerical output shows that an accuracy to 3 decimal places 
has not yet been achieved. 

4.    Conclusions 

At first glance, the stability criterion that we found in Sect. 3 may be rather surprising. 
In fact, the calculations in Sect. 3 support the conclusion that by chosing an IM barely 
sufficient to ensure the convergence of the field scattered by the component spheres, 
one also achieves an acceptable stability of the scattering pattern from the whole 
cluster. Nevertheless, let us recall that the pattern from the cluster differ from that of 
the independent spheres because of the coupling effected by the multipole translation 

matrix elements Haimc'i'm' ^" ^q. (5). These quantities, as appears from their explicit 
expression in Ref. 7, heavily depend on the distance between the centers of the spheres 
and are bound to be small, even for contacting spheres, when the radius of the latter 
is large. Of course, the translation matrix elements are even smaller for noncontacting 
spheres. As a result, in spite of the coupling, the scattering pattern from a cluster of 
big spheres is governed by the scattering power of the spherical components, that is 
given by the Mie coefficients iJ^y. Of course, the criterion that we found in Sect. 3, may 
not be strictly valid for a cluster whose spherical components have strongly different 
scatting power. In such a case a more detailed analysis is in order by chosing, as we 
suggested in Sect. 2, a different IM for each sphere. 

Anyway, the calculations that we presented in Sect. 3 support our considerations 
in Sect. 1 on the accuracy that is reasonable to pursue when calculating the optical 
properties of model particles. In fact, the particles that are produced in actual ex- 
periments are often not well characterized whereas the mathematical techniques may 
give results that are strongly dependent on the exact geometry, size and orientation of 
the particles concerned. This is just the problem that has been faced by Mishchenko 
and Mackowski in comparing their theoretical predictions with the experimental data 
from bispheres.^"'^^ These authors state that they were forced to repeat their calcula- 
tions several times changing the size of the particles in order to get results reasonably 
resembling the experimental findings. It is evident that the computational effort in 
the case of bispheres is much lighter than in the case of the 13-sphere cluster we 
deal with in this paper.^^ Therefore, using the stability criterion we established in 
Sect 3, possibly in the framework of the E-scheme, will save a lot of calculations, 
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still reproducing the main features of the signature of the particle concerned. This, 
in turn, would make viable repeating of the calculations in order to get the patterns 
that better resemble the experimental data. 
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List of Figure Captions 

Fig. 1. Contour plot of the differential scattering cross section (log scale) of the ag- 
gregate reduced to 20 % of its real size, calculated in the E-scheme. The incident field 
has 1?/ = 90° and tfi = 0°. In (a) LM = 3, in (b) IM = 5 and in (c) LM = 8. 
Fig. 2. Differential scattering cross section for the cluster reduced to 20 % of its real 
size, calculated in the E-scheme for LM = 2 (dotted), 3 (dot-dashed), 4 (bulleted) 
and 5 (sohd), for i9/ = 90° and ifi = 0°. In (a) i9s = 90°; in (b) ^s = 30°. 
Fig. 3. Comparison of the differential scattering cross section for the cluster reduced 
to 20 % of its real size calculated in the E-scheme for IM = 4 (heavy solid line) with 
that yielded by the T-scheme with IM = 4 and /M = 4 (light solid), 6 (dot-dashed), 
8 (dotted), 10 (bulleted), 12 (dashed), t?/ = 90°, cpi = 0°, and ^s = 90°. Note that 
the heavy solid curve and the dashed curve are almost perfectly superposed on the 

scale of the figure. 
Fig. 4. Contour plot of the differential scattering cross section for the cluster con- 
sidered with its real size calculated in the E-scheme for i?/ = 90° and c/?/ = 0° with 

LM = 13 in (a) and LM = 15 in (b). 
Fig. 5. Contour plot of the differential scattering cross section for the cluster con- 
sidered with its real size calculated in the E-scheme for '&j = 45° and (fj = 0° with 

XA/ = 13 in (a) and LM = 15 in (b). 
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Table 1. Coordinates of the centers of the component spheres in fxm. The 
radius and refractive index of each sphere are 1.145 ;um and 1.59, respectively. 

X y z 
1 0.00000 0.0000000 0.0000000 

2 0.00000 1.9250000 -1.1890000 

3 0.00000 -1.9250000 -1.1890000 

4 0.00000 -1.9250000 1.1890000 

5 0.00000 1.9250000 1.1890000 

6 1.92500 -1.1890000 0.0000000 

7 -1.92500 1.1890000 0.0000000 

8 -1.92500 -1.1890000 0.0000000 

9 1.92500 1.1890000 0.0000000 

10 -1.18900 0.0000000 1.9250000 

11 1.18900 0.0000000 1.9250000 

12 1.18900 0.0000000 -1.9250000 

13 -1.18900 0.0000000 -1.9250000 

15 



Fig. 1 



4 

3.5 

 1  T 1                   1 

- 

1^ ./ X   ' s 

|2.5 
v^- '■'/ t^ 

2 

1                                         1                              L. 

/     - 

-90 -60 -30 0 
♦. 

30 60 90 

Fig. 2 



Fig. 3 



Fig. 4 



Fig. 5 


